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Toward a Liquid-State Theory with Accurate 
Critical-Region Behavior 1 

J. S. H0ye  2 and G. Stell 3 

A scaling-theory approach that yields the scaled thermodynamics in the critical 
region as the solution of an ordinary differential equation is given, along with a 
power-series "isocline" representation of the solution yielding a polynomial lit of 
a high accuracy. A means of extending the approach to the whole liquid-state 
region through a self-consistent integral equation for the radial distribution 
function is discussed. An alternative integral-equation approach and a simple 
application of scaling-theory results that has already been found to be globally 
useful are also noted. 

KEY WORDS: critical region; isocline; radial distribution function; scaling; 
thermodynamics. 

1. I N T R O D U C T I O N  

F o r  many  engineer ing app l ica t ions  it is des i rable  to have expressions  for 
t he rmodynamics  funct ions and  pa i r  d i s t r ibu t ion  funct ions tha t  yield quan-  
t i ta t ively accurate  results over  a d o m a i n  that  includes the cri t ical  po in t  as 
well as the l iquid-s ta te  region in the t r ip le -po in t  ne ighborhood .  Here  we 

discuss some results we have ob ta ined  t o w a r d  tha t  end. We begin in Sec- 
t ion 2 by sett ing forth an a p p r o a c h  of ours  tha t  yields a differential  
equa t ion  descr ib ing the t h e r m o d y n a m i c s  of a fluid in its cri t ical  region,  

based on  scal ing assumpt ions .  A pre l iminary  s tudy of the solut ion of the 
equa t ion  yields excellent  agreement  with exper imenta l  results. The solut ion,  
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moreover, lends itself to a convenient analytic "isocline" representation as a 
means of treating critical-region thermodynamics. In Section 3 we discuss 
one means of incorporating a differential-equation approach into a theory 
of the pair distribution function g(f) and also an alternative integral- 
equation approach based on an asymptotically exact form of the direct 
correlation function c(f). In Section 4 we give a simple application of ther- 
modynamic generalized-scaling (renormalization-group) results to obtain a 
useful expression for the latent heat of vaporization. 

2. A DIFFERENTIAL-EQUATION APPROACH TO 
CRITICAL-REGION THERMODYNAMICS 

Intense effort over the past two decades by many workers has made it 
overwhelmingly clear that in the critical region, the behavior of ther- 
modynamic functions of interest, such as the Helmholtz and Gibbs free 
energy, is dominated by a scaling part that can be described by a 
homogeneous function of two variables. Let I be this singular scaling part 
of -~F/N,  where F is the Helmholtz free energy, and /~ -1=  k~T, with kB 
Boltzmann's constant and T the absolute temperature. We introduce 
reduced variables t and Ap in terms of T and number density p: 
t = (Be -/~)/flc, Ap = (p - po)/p~, where the c subscript denotes critical. [In 
this section we are concerned with limiting proportionalities and relations 
that we expect to become exact only as t~O,  Ap--,O. Thus (T-To) /T~ 
would be an equally appropriate representation of t.] We denote the 
isothermal compressibility (susceptibility) as Z. Then (aside from trivial fac- 
tors) ~I/Ot is just the scaling part of the internal energy per particle, while 
t?2I/O(Ap) 2 is just the inverse compressibility, Z 1. We thus expect 

where ~ and y are the critical exponents (in usual notation) describing the 
specific heat and compressibility dependence on t: 

c32I/at2~t -~, g ~ t  -~, Ap=0 ,  t-- .0 (1) 

From these proportionalities it follows that we expect, as a limiting relation 
that is approached as we approach the critical point in the one-phase 
region, 

az/a t  ~ [ a~ i /a (  4 p  ) ~]  (' -- ~/~ (2) 

Since Z does not completely specify the location of a point on the t, Ap 
plane, we must also consider the role played by the direction in which we 
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approach the critical point in that plane. This direction can be conveniently 
characterized as an angle 0 in the t, alAp[ ~/~ plane, in which the 
coexistence curve is given (sufficiently close to the critical point) by the 
straight line [ 1 ] 

t = - a  IApl l/a, a = const 

[We start having standard-notation conflicts here. This fl is not (k~ T) 1, 
but no confusion should arise, since we use t throughout as a temperature 
variable.] Since the scaling-theory picture, strongly butressed by renor- 
malization-group computations, is consistent with the assumption that 
functions such as I and its derivatives are smooth in 0, we shall assume that 
the proportionality factor in Eq. (2) is a smooth function of 0, nonzero for 
-(7t/4) ~< 0 ~< 0z/2). We have found, in fact, that a promising approach that 
is consistent with scaling-theory assumptions can be based on treating the 
factor as a constant, which yields the partial differential equation (pde) 

01lOt = const[02//0(Ap)2] (1 ~)h (3) 

One boundary condition (bc) for Eq. (3) immediately follows from the 
scaling relation for pressure along the critical isotherm, 

OI/O(zlp)~lApl~sgnAp at t = 0  (4) 

Another bc comes from Eq. (1). In terms of I itself, Eqs. (1) and (4) yield 

I=cons t lApl  ~+1 for t = 0  
(5) 

I = c o n s t t  2 ~+const(Ap)2F as A p ~ O ,  r > 0  

Our next step is most conveniently taken in terms of the chemical potential 
#. Letting H(p, T)=#(p ,  T ) - # ( p o  T) and M =  IApl, we note that in the 
critical region 

H ~  const OI/c~M (6) 

Invoking the homogeneity of H in M and ltl ~ we can write [2] 

H =  Itlae y(x), x - -  M/It[ ~ (7) 

Then 

while 

aH/OM= Itl ~(~-l)y'(x),  02H/aM 2= Itl ~(~ 2~y'(x) (8) 

OH/at = (flltl ~a/t)(6y - xy') (9) 
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If we are thinking in magnetic language, H can be taken to be the magnetic 
field strength and M the magnitude of magnetization per spin. Then Z, the 
magnetic susceptibility, is (OM/~?H)T. [Here it is most convenient to let t --  
( T - T c ) / T . ]  Upon differentiation with respect to M, Eq. (3) can then be 
reexpressed through the use of Eqs. (6)-(9) as the ordinary differential 
equation (ode) 

y" = +c[6y  - x y ' ] ( y ' ) ~ + ~ -  j~/~ (lO) 

where c > 0. The + refers to supercritical, t > 0, and the - refers to t < 0. 
Our bc can be reexpressed as 

y( x ---, oe ) ---, const x ~ ( t % 0 ) 
(11) 

y(x ~ 0) --, const x (t > 0) 

We now have an ode to solve with boundary conditions that prove to yield 
a unique y(x) and, hence, through Eq. (7), a unique H(M, t). This function 
y(x) and its ode are awkward to handle as they stand, however. A transfor- 
mation to logarithmic variables U and V helps [-2], where x = 10 ~=  e ~ ,  
y = 10v= e ~U. Letting W =  dV/dU = Vv one gets 

Wu = a{ W -  W 2 +_ cx2(6 - W)[ Wy/x] ~+~- 1)/~} (12) 

with 

V(U~oe) - -*6U+cons t l  ( t%0) 
(13a) 

V(U--* - 0 o ) ~  U +  constz ( t > 0 )  

The constant c in Eq. (12) and the constants in Eq. (13a) depend upon the 
form of the interaction potential and are hence not universal, but it turns 
out that changing them will result only in a translation in the U, V plane of 
the solution curve V= V(U). In a trial computation with 6 = 5, /~ = 1/3, 
and 7 = 4/3, the values constl = 1/2 and const2 = 1/2 and const2 = 3/2 gave 
us a good asymptotic match to simple-fluid data. Upon solving Eq. (12) t o  
obtain V(U), the value c ~ 0.37 was then found to yield an excellent overall 
fit. In summary our trial values were 

1 4 
6 = 5 ,  /3 3' 7 3 

1 3 
constl = ~, const 2 = ~, c = 0.37 

(13b) 

The result is shown in Fig. 1, superimposed against many data exhibited in 
Fig. 3 of Ref. 2, to which we refer for further details of the data analysis. 
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Fig. 1. The solid curve is our scaled equation of state in the 
critical region based on Eqs. (12)-(14). The points represent 
experimental data for various fluids from a figure in Ref. 2, 
where 6 = 5 and ~b = 0.35 were used in plotting the data. 

As a l ready  no ted  m a n y  years ago by workers  invest igat ing scaled 
equa t ions  of  s tate [3 ] ,  the use of the U, V p lane  leaves someth ing  to be 
desired in d i sp lay ing  t h e r m o d y n a m i c  homogenei ty ,  involving as it does 
separa te  b ranches  for t < 0 and  t > 0. A more  convenient  and  powerful  
general  r ep resen ta t ion  for our  purposes  is the "isocline" representa t ion ,  
sys temat ica l ly  discussed in great  detai l  by M i g d a l  [4 ] .  He considers  the 
funct ion ~b(m), where  

H)(  13+y)/7 = q~(m), Z = (OM/8T)r  (14) 

m = MZ ~/~ (15) 
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As he notes, (i) m and ~b(m) stay finite ~< 0(1) over the whole critical region, 
(ii) ~b(m) has no singularities in the critical region and can be well represen- 
ted by the series 

~b(m) = m + q~3 m3 q- ~bsm 5 + .. .  (16) 

and (iii) ~b'(0) = 1. If mo is the value of m on the critical isotherm ~b(mo) = 
[/~/(/~ + 7)] mo and ~b'(mo) = (/~ - 1)/(/~ + 7 + 1 ). 

Migdal focuses primarily on the two-term approximant to Eq. (16) 
(which is essentially Schofield's [5]  "linear model") and the three-term 
approximant, which the conditions of iii will fully determine for a given mo. 
For example, with/? = 1/3 and 7 = 4/3, one has 

~b(m) = ~b3(m) = m(1 - z 2 + z4/5) (17) 

with z = m/mo. In the case of the four-term approximant we found that the 
satisfaction of iii leaves one remaining adjustable parameter. For  example, 
with/~ = 1/3 and 7 = 4/3, 

r = ~b3(m ) + Amz2(1 - 2z 2 + z 4) (18) 

where A is the parameter to be adjusted. 
The transformation necessary to go from the U, V to the ~b(m) 

representation is obtained from the equations 

Y 'Z-- - I t l - ,~-  1) 

mix = (y') ~/% c~(m)/y = (y,)-(,+.e)/7 (19) 

O(m)=m/W,  y '=  Wy/x 

From Eq. (12) one obtains V and W as functions of U. The isocline 
then be computed directly from Eq.(19) by obtaining the can 

corresponding m = m(U) and ~b(m)= ~b[m(U)]. We note that our Eqs. (10) 
and (12) with their boundary conditions yield a ~b(m) that satisfies con- 
dition iii. We show in Fig. 2 the solution to our equation in terms of ~b(m) 
in the test case fl = 1/3, 7 = 4/3, and c = 0.37. The four-term approximant, 
with A = -0.35, is indistinguishable on this scale from the full ~b(m). The 
three-term approximant is indicated by the dashed line in Fig. 2. 

3. A DIFFERENTIAL-EQUATION APPROACH BASED ON THE 
PAIR CORRELATION FUNCTION 

We now consider a differential-equation approach associated with the 
pair correlation function g ( f ) -  1 = h(f), using a self-consistent Ornstein- 
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Fig. 2. The full curve is the isocline computed from Eqs. (12)-(14), The dashed line is its 
three-term approximant. The four-term approximant is indistinguishable from the full isocline 
on this scale. 

Zernike approximation (SCOZA) we have been investigating [6].  It is 
based on the Ornstein-Zernike integral equation 

h(fl2 ) ~- c(F~12) -~-/9 f h(F13) c(F'32 ) d?~3 (20a) 

There is a core condition, with r12 = ]f121, 

h(/~12) = --l, r12 ~< a (20b) 

In the simplest version of our SCOZA applied to the lattice gas, where 
a = 0, we let 

c(f12) = -A(~(f12)/kB T, r12 > a (21) 

with ~b(f~2 ) the pair potential and A determined by requiring self-con- 
sistency between the internal energy and the compressibility (susceptibility) 
dependence o n  h ( f l 2  ). In Ising-model language, let 2 = t h e  partition 
function and ~ = fill, with H the magnetic field and M the magnetization 
per spin. Here f l=a/kT,  with a = ~ i O ( f O i ) / 8  , a measure of interaction 
strength. Then letting 

S(fl, M) = in 2 - M (22) 

840/6/6-3 
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we ean make contact with our previous discussion by noting 

3 s =  s -  sc~ z, t=/3-/3o 

Our self-consistent approximation yields a pde for S that will depend on 
details of the potential. Neglecting all features of a potential but its range 
(through its zeroth and second spatial moments) permits a simplified but 
representative ode of the form 

S~=M2+( l+M2)73{1 - - [ (M2- -1 )SMM]1/2  } (23a) 

where 7R is a measure of the inverse range of ~b(f). The full boundary con- 
ditions are given both at/3 = 0 and at M =  4-1 by 

S = So(M) + t im 2, S O = noninteracting spin result (23b) 

As we approach critical we find that Eq. (23a) approaches (after a suitable 
renormalization of S,/3, and M to absorb some trivial factors) 

1 M2 Se =~ - ( -  SMM) 1/2 (24) 

We see that 7R has disappeared in Eq. (24) in accordance with the 
hypothesis of universality by which such features will not affect critical 
behavior. Neglecting for the moment the bc given by Eq. (23b), to which 
we return below, we find that Eq. (24) has a scaling solution. To get the 
ode that it satisfies we can differentiate Eq. (24) with respect to M. We 
obtain from SMM = --~Yf/OJC{ 

= - M  + ~MM/2(JfM) m2 (25) 

Introducing the variables y =  IJg~l/ltl 5/4 and x =  IMI (Itl 1/4), the equation 
for y(x) that we obtain from Eq. (25) is 

1 
y " =  + ~  (5y - y'x)(y')l/2 + x(y,)I/2 (26) 

This equation has the critical exponents 

1 1 
6 = 5 ,  /3=~, 7---1, c~=~ (27) 

These are tricritical exponents. Tricriticality is associated wi th  the con- 
fluence of two critical points and presumably arises here as a result of the 
self-consistency condition of our approximation forcing the merger of the 
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critical point determined through the internal energy and the critical point 
determined through the susceptibility. 

As we go further and further from the critical point, a separate 
analysis shows that the S of our SCOZA behaves more and more like the S 
obtained through the susceptibility relation in the mean spherical 
approximation (MSA). The MSA critical exponents obtained through this 
relation are 

1 
6 = 5 ,  f l = 7 ,  7 = 2  , ~=  -1  (28) 

Z 

One might expect, therefore, as one takes our self-consistent approximation 
back to the critical point, that the effective exponents will reflect a 
crossover behavior from Eq. (28) to Eq. (27). Numerically this is exactly 
what we find, with effective exponents looking remarkably like 

4 ~>~0 (29) 6~5,  f i~ , ~ , ~ ,  

over a quite wide range of M and t. These effective exponents yield an 
approximation with very realistic critical behavior. What is n o t  clear from 
our analysis is whether the true boundary conditions given by Eq. (23b) of 
the problem will permit the SCOZA actually to attain the scaling form 
given by Eq. (26) as a critical-point limit. Further progress in this direction 
is highly desirable; our goal is to put into analytic terms the results of our 
numerical analysis of the approximation in the crossover region. 

The fact that self-consistency can perturb the MSA result [which one 
would get if A = 1 in Eq. (21)] in such a useful direction already seems 
intriguing and potentially very useful. This is especially true in light of the 
great improvement over the MSA results that the approximation was 
found to yield in an earlier study [7J of the nearest-neighbor lattice gas (or 
Ising model) away from the critical point. It gives the first two terms in the 
p expansion for c(r) and, hence, the first three virial coefficients exactly. By 
the lattice-gas symmetry in p ( 1 - p )  it is thus also highly accurate in the 
dense-fluid region of the lattice-gas T, p plane. 

The results of Ref. 8 suggest an alternative way of going beyond the 
MSA based on using, instead of Eq. (21), 

c(,52) = - ~ ( 4 2 )  + ~(r12, ~), r,~ > o (30) 

where (g(r, ~c) is a homogeneous function in r -1 and ~c of degree (2 - r/) + d, 
~c =inverse correction length, and d =  the dimensionality. This form will 
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incorporate many of the exact asymptotic features of h(f) and c(f) dis- 
cussed in Refs. 8 and 9 if an appropriate homogeneous approximant to ~ is 
constructed and ~c is then obtained self-consistently. 

41 A SIMPLE APPLICATION OF GENERALIZED 
SCALING ARGUMENTS 

In certain cases, one is interested in a function of a single ther- 
modynamic variable, as in the case of the latent heat of vaporization L as a 
function of temperature. Here, for example, the singular part of L is expec- 
ted to be of the form El0] 

L s = a l t ~ + a 2 t  ~+~ +a3t l -~+~ + "-' (31) 

where A is Wegner's first "gap" exponent [ 11 ] and t = (To - T)/Tc. When 
the exhibited terms in Eq. (31) were added to a regular term of the form 

LR = bl t + b2 t2 + bs t 3 (32) 

Torquato and Stell El0] found extremely good agreement with water data 
from the triple point to the critical point with appropriately fitted values of  
the (nonuniversal) constants ai and b~. Torquato and Smith [12] sub- 
sequently found good corresponding-state agreement for a wide variety of 
fluids using the same functional form to fit LILt  vs ~= ( T ~ - T ) / T ~ - T t ,  
where the subscript t refers to the triple point, while Sivaraman et al. [ 13] 
found a good generalized corresponding-state fit for L/RT~ using Eqs. (31) 
and (32) and an acentric factor. 
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